Robust Reconstruction of Causal Graphical Models based on Conditional 2-point and 3-point Information
نویسندگان
چکیده
We report a novel network reconstruction method, which combines constraintbased and Bayesian frameworks to reliably reconstruct graphical models despite inherent sampling noise in finite observational datasets. The approach is based on an information theory result tracing back the existence of colliders in graphical models to negative conditional 3-point information between observed variables. In turn, this provides a confident assessment of structural independencies in causal graphs, based on the ranking of their most likely contributing nodes with (significantly) positive conditional 3-point information. Starting from a complete undirected graph, dispensible edges are progressively pruned by iteratively “taking o↵” the most likely positive conditional 3-point information from the 2-point (mutual) information between each pair of nodes. The resulting network skeleton is then partially directed by orienting and propagating edge directions, based on the sign and magnitude of the conditional 3-point information of unshielded triples. This “3o↵2” network reconstruction approach is shown to outperform constraint-based, search-and-score and earlier hybrid methods on a range of benchmark networks.
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملSplat-based surface reconstruction from defect-laden point sets
We introduce a method for surface reconstruction from point sets that is able to cope with noise and outliers. First, a splat-based representation is computed from the point set. A robust local 3D RANSAC-based procedure is used to filter the point set for outliers, then a local jet surface – a lowdegree surface approximation – is fitted to the inliers. Second, we extract the reconstructed surfa...
متن کاملRobust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کامل